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Hydrodynamics with noise

▶ Initial state fluctuations
▶ Thermal fluctuations – for example Landau-Lifshitz

Ngg(t, k) ≡ ⟨gi(t, k)gj∗(t, k)⟩︸ ︷︷ ︸
momentum, gi ≡ T 0i

= (e+ p)Tδij︸ ︷︷ ︸
equilibrium

1. Conceptually important (required by the FDT)
2. Larger in smaller systems: Nparticle ∼ 10000 in the heavy-ions
3. Essential near a critical point

How do thermal fluctuations evolve during a Bjorken expansion?
How do thermal fluctuations change the Bjorken expansion?
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Kinetic regime of hydrodynamic fluctuations – a new scale k∗

1. For hydrodynamic fluctuations with wavenumber k:
▶ Equilibration rate ∼ γηk

2 (γη ≡ η/(e+ p))
▶ Expansion rate ∼ 1/τ for a Bjorken expansion

2. Compete at a critical scale:

k∗ ∼
1

√
γητ

3. Derivative expansion controlled by ϵ ≡ γη/τ ≪ 1

1

csτ
≪ k∗ ∼

1

csτ
√
ϵ︸ ︷︷ ︸

k∗ is hard !

We derive an effective description for the kinetic regime k∗
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Hydro-kinetic equation: an analogy with Brownian motion

1. Langevin equation

dp

dt
= −γp︸︷︷︸

drag

+ ξ︸︷︷︸
noise

, ⟨ξ(t)ξ(t′)⟩ = 2TMγδ(t− t′)

2. Calculate how ⟨p2(t)⟩ evolves through Langevin process

d

dt
⟨p2⟩ = −2γ

[
⟨p2⟩ −MT

]︸ ︷︷ ︸
equilibration

Follow the same steps for hydrodynamics with external forcing
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Hydro-Langevin equation

1. Linearized analysis in Bjorken: e = e0 + δe, g⃗ = (e0 + p0)v⃗

ϕa(t, k⃗) ≡ (csδe, g⃗)

2. Hydro-Langevin equation for ϕa(t, k⃗)

−ϕ̇(t, k⃗) = iLϕ︸︷︷︸
ideal

+Dϕ+ ξ︸ ︷︷ ︸
viscous

+ P(t)ϕ︸ ︷︷ ︸
expansion

3. Four eigenmodes of L: ϕ+, ϕ−, ϕT1 , ϕT2

left moving sound︸ ︷︷ ︸
λ− = −csk

right moving sound︸ ︷︷ ︸
λ+ = csk

transverse modes︸ ︷︷ ︸
λT = 0

The Hydro-Langevin equation in eigen basis is similar to Brownian motion
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Eigenbasis in the Bjorken expansion
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Hydro-kinetic equation

1. Analyze the square of the eigenmodes – for example

N++(t, k⃗) ≡ ⟨ϕ+(t, k⃗)ϕ
∗
+(t, k⃗)⟩

2. Hydro-kinetic equations for N++ and NT2T2

Ṅ++ = −4

3
γηk

2 [N++ − T0(e0 + p0)]−
1

τ

[
2 + c2s + cos2 θk

]
N++

ṄT2T2 = −2γηk
2 [NT2T2 − T0(e0 + p0)]︸ ︷︷ ︸

equilibration

− 2

τ

[
1 + sin2 θk

]
NT2T2︸ ︷︷ ︸

external forcing

3. Neglect off-diagonal components of density matrix

N+− ∼ e−i(λ+−λ−)t ∼ 0︸ ︷︷ ︸
rotating wave approx

No mixing between T1 and T2 because of rotational symmetry in xy plane

Hydro fluctuations are driven out of equilibrium at k∗
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Solution of the hydro-kinetic equation

Bjorken expansion at late times
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k∗ is the critical scale: For larger k ≫ k∗, closer to equilibrium

NAA ∼ Neq
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]
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Evolution of the background

T
zz

Hydrodynamic equation for a Bjorken expansion:

d

dτ
(τT ττ ) = −T zz

▶ Without hydrodynamic fluctuations:

T zz = p0︸︷︷︸
ideal

− 4η0
3τ︸︷︷︸

1st order

+(λ1 − ητπ)
8

9τ2︸ ︷︷ ︸
2nd order

▶ Hydrodynamic fluctuations give another contributions

T zz
fluct = (e0 + p0)⟨uzuz⟩ =

⟨gzgz⟩
e0 + p0

Nonlinear contributions from hydrodynamic fluctuations to the background
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Nonlinear contributions from k∗ to the background

~k

θ

1. Compute the contribution from fluctuation

⟨(gz(t, x⃗))2⟩ =
∫ Λ

d3k
[
N++ cos2 θk +NT2T2 sin

2 θk
]︸ ︷︷ ︸

∼ 1 + #/(γητk2) + · · · for k ≫ k∗

▶ Regularize cubic and linear UV divergences by a cutoff Λ

2. Renormalize the divergences c.f. Kovtun-Moore-Romatschke (11)

T zz = p0(Λ) +
Λ3T

6π2︸ ︷︷ ︸
≡ pphys

− 4

3τ

[
η0(Λ) +

17ΛT

120π2

e0 + p0
η0

]
︸ ︷︷ ︸

≡ ηphys

+ finite

The cutoff dependence is absorbed by renormalization of p0 and η0
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Finite contributions: Long-time tails

Evaluate the finite parts after renormalization

T zz = p︸︷︷︸
ideal

− 4η

3τ︸︷︷︸
1st order

+1.08318 T

(
1

4πγητ

)3/2

︸ ︷︷ ︸
long-time tail

+ · · ·

Simple understanding of the scaling

T zz
fluct ∼ 1

2kBT︸ ︷︷ ︸
equipart

∫
d3k︸ ︷︷ ︸

# of modes

∼ Tk3∗ ∼ T

(
1

γητ

)3/2

The finite contribution from k∗ gives the long-time tails

11 / 18



Implications for heavy-ion collisions

Plugging in typical values

T 3

s
≃ 1

13.5
,

λ1 − ητπ
e+ p

≃ −0.8

(
η

e+ p

)2

Compute 4⟨T zz⟩/(e+ p)

η

s
=

1

4π
: 1− 0.092

(
4.5

τT

)
+ 0.034

(
4.5

τT

)3/2

− 0.00085

(
4.5

τT

)2

η

s
=

2

4π
: 1︸︷︷︸

ideal

− 0.185

(
4.5

τT

)
︸ ︷︷ ︸

1st order

+0.013

(
4.5

τT

)3/2

︸ ︷︷ ︸
1.5th order

− 0.0034

(
4.5

τT

)2

︸ ︷︷ ︸
2nd order

Thermal fluctuation is practically larger than 2nd order viscous correction
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A few remarks on transverse pressure

There is an extra contribution from initial-time fluctuations:

T xx = p︸︷︷︸
ideal

+
2η

3τ︸︷︷︸
1st order

− 0.273836 T

(
1

4πγητ

)3/2

︸ ︷︷ ︸
long-time tail

+

[
χgg
τ0 + δχgg

τ0

τ2(e+ p)2

]
1

12πγητ︸ ︷︷ ︸
initial time contributions from T1

Origin of the initial time contributions:

▶ Initial fluctuations with a long-range rapidity correlation (χgg
τ0 )

▶ Initial-time thermal fluctuations diffused in rapidity (δχgg
τ0 )

∆η ∼

√
6γη(τ0)

τ0

Initial and initial-time thermal fluctuations of T1 mode contribute to T xx
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Comparison to previous diagrammatic calculation in static systems
c.f. Kovtun-Moore-Romatschke (11), Kovtun-Yaffe (03)

1. Apply a shear perturbation:

hxy(t) = hxye
−iωt

2. Compute how N++ evolves away from equilibrium:

Ṅ++ = −γηk
2[N++ −Neq] + ḣ(t)N++

3. Compute fluctuation contribution to stress in the linear order of h:

T xy = p0h
xy + η0ḣ

xy +
⟨gxgy⟩
e0 + p0

4. Separate divergent and finite contributions in ⟨gxgy⟩:

⟨gxgy⟩ ∼
∫
k

iω

−iω + γηk2

Follow the same procedure with the Bjorken expansion
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Result for shear response function

Linear response of T xy(ω) to hxy(ω)
c.f. Kovtun-Moore-Romatschke (11), Kovtun-Yaffe (03)

GR(ω) ≡
T xy(ω)

hxy(ω)
=

(
p0 +

Λ3T

6π2

)
︸ ︷︷ ︸

≡ pphys

−i

(
η0 +

17ΛT

120π2γη

)
︸ ︷︷ ︸

≡ ηphys

ω

+ (1 + i)

(
3
2

)3/2
+ 7

240π
T

(
ω

γη

)3/2

︸ ︷︷ ︸
long-time tail

Comments:

▶ Diagrams: Computation in a flat space

▶ Kinetic: Computation in a curved space

The hydro-kinetic theory reproduced the previous result with diagrams
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Summary & Outlook

▶ Hydro-kinetic equation for k∗, advantageous in expanding systems

▶ Universal renormalization of pressure p0(Λ) and viscosity η0(Λ)

▶ Background-dependent long-time tails ∝ τ−3/2, ω3/2

▶ Alternative way to solve the hydrodynamics with noise

dµT
µν = 0, ṄAA = · · · , Tµν = Tµν

bkg +

∫
k
NAA,

▶ Bulk viscosity renormalization for nonconformal fluid
YA-Mazeliauskas-Teaney, in preparation

ζ = ζ0(Λ) +
ΛT 2

2π2

[(
1

3
+

T

2

dc2s
dT

− c2s

)2
s
4
3η

+

(
1

3
− c2s

)2 2s

η

]
▶ Application to critical dynamics YA-Teaney-Yan-Yin, in progress
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Bulk viscosity from thermal fluctuations

▶ Use lattice EoS by Hot QCD Collaboration
▶ For ζ0(Λ) = 0 case
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Thank you for your attention!
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